Supporting Multi-dimensional Naming for NDN Applications

Shuai Gao and Hongke Zhang

Beijing Jiaotong University (BJTU)

Beichuan Zhang

The University of Arizona
Introduction

Apply NDN to IoT applications

Data naming

Internet data
1. Natural units or granularitites
2. one-dimensional hierarchical naming
3. LPM lookup operations

Gap problem of data naming

IoT data
1. Intrinsic spatial-temporal nature
2. User requests with multi-dimensional attributes

VANET
WSN
DTN
MANET
...

IoT applications
Introduction

Goal: design efficient name translation and optimization solution to fill the gap

- support multi-dimensional user requests in IoT applications
- keep the original LPM operations unchanged

Gap analysis between user requests and one-dimensional names

<table>
<thead>
<tr>
<th>User requests</th>
<th>Interest names and lookup results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index</td>
<td>Space</td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
</tr>
<tr>
<td>A</td>
<td>sectionA, roadA</td>
</tr>
<tr>
<td>B</td>
<td>roadA</td>
</tr>
<tr>
<td>C</td>
<td>sectionA, roadA</td>
</tr>
<tr>
<td>D</td>
<td>roadA</td>
</tr>
</tbody>
</table>

In-network content

Goal: design efficient name translation and optimization solution to fill the gap

- support multi-dimensional user requests in IoT applications
- keep the original LPM operations unchanged
Middleware design

Translate multi-dimensional and flexible user requests into original NDN Interests with one-dimensional naming
Raw data naming

- one-dimensional naming consisting of multi-dimensional components based on hierarchical and discretized names for the raw application data
- support flexible granularity, name aggregation and longest prefix matching

Example of middleware design in vehicle communications

/middleware/space/.../time/.../type/...

<table>
<thead>
<tr>
<th>Component & Format</th>
<th>Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>space /roadID/mile_index</td>
<td>(roadID:) a unique identifier for each road (mile_index: 0, 1, 2, ..., i, ...;) (i) denotes the section ((i, i + 1)) mile</td>
</tr>
<tr>
<td>time /date/minute_index</td>
<td>(date: /year/month/day) (minute_index: 0, 1, 2, ..., j, ...; 287;) (j) denotes the duration ((5j, 5(j + 1))) minutes.</td>
</tr>
<tr>
<td>type /speed/avg</td>
<td>average speed of vehicles</td>
</tr>
<tr>
<td>type /speed/max</td>
<td>maximum speed of vehicles</td>
</tr>
<tr>
<td>type /speed/min</td>
<td>minimum speed of vehicles</td>
</tr>
<tr>
<td>type /traffic</td>
<td>number of vehicles passing by</td>
</tr>
</tbody>
</table>
Request expression from the APP layer

- No explicit requirements on the order about different dimensions
- The asterisk wildcard is allowed.

```
/userRequest/space/roadID/{pointA, pointB}
/time/{/yearA/monthA/dateA/tsA, /yearB/monthB/dateB/tsB}
/type/...
```

e.g. ”/space/broadway/{2.5,5.7}” denotes a road section from 2.5 mile to 5.7 mile of Broadway Blvd

/space/broadway/*
Data discovery

- There may exist various aggregated names which are different from the raw names.
- It is better to request the contents with aggregated names rather than the raw names if the contents with aggregated names exist in the network.
- To obtain the network status about what kinds of contents are available within the network.
 - Called metadata stored at local metadata base (MDB)
Interest name translation

- Basic translation
 - the APP inquiry with flexible and continuous multi-dimensional attributes will be semantically translated into the raw names with fixed and discretized granularity.

- Name optimization
 - a shorter name is preferred in the Interest packet if it can be satisfied by the network.
 - sending Interests with aggregated names rather than the raw names will help reduce the burden of NDN content routers and improve the network efficiency greatly.
1) **Compatibility Consideration**
 - It is built on standard NDN layer and has no any modifications on original NDN packet format and protocol operations.
 - Not all the nodes are required to implement the middleware.

2) **Complexity Analysis**
 - processing capacity about database lookup;
 - metadata base memory and metadata discovery protocol overhead
 - The ChronoSync-like scheme in small-scale network.
 - More scalable metadata discovery protocol to control the dissemination scope of the details about content availability.

3) **Testbed Validation Approaches**
 - Short-term: the middleware module works independently.
 - Long-term: a more generalized middleware integrated into the NFD. And a new API needs to be designed to provide Interest translation service to the APP layer.
Scheme comparison:

- Name Optimization (NO): the proposed middleware architecture with full functions.
- Raw Names (RN): the proposed middleware architecture with basic translation function only.
- Arbitrary Aggregation (AA): the proposed middleware architecture without data discovery function.
Results of handover latency

Metric: number of Interests sent by the content consumers.

Aggregation degree: the percentage of the raw names already being aggregated.
Results of connection setup time

Metric: average content retrieval time for each user request.

Aggregation degree: the percentage of the raw names already being aggregated.
Thank You!