Q NN

OSAKA UNIVERSITY

Identifying Highly Popular
Content Improves Forwarding
Speed of NDN Software Router

OJunji Takemasa, Kosuke Taniguchi,

Yuki Koizumi and Toru Hasegawa

Osaka University, Japan

oward High-Speed NDN Routers

s Two heaviest functions of NDN routers [1]

1. FIB lookup
 Existing studies try to resolve this issue
« Fast LPM algorithms
« FIB lookup cannot be bypassed
« One of the essential functions of name-based forwarding

2. Cache insertion

« Algorithm for cache insertion is so simple that reducing its
computation is difficult

« However, cache insertion for some content can be omitted
m Cache insertion for unpopular content

 Inserting content that will not be requested in the future can
be omitted

« Computation time for cache insertion can be reduced

[1] K. Taniguchi et al., “Poster : A Method for Designing High-speed Software NDN Routers,” in Proc. of ACM ICN, 2016. 2

Wasteful Cache Computation

s Unnecessary cache insertion due to cache eviction

« Cache eviction (like LRU and LFU) decides which content should be evicted
from the cache

« Incoming content is always inserted into the cache even if it will not be requested
in the future

s Bypassing the unnecessary cache insertion with cache
admission

- Cache admission decides whether content should be inserted to the cache
- Content is not inserted into a cache if it may not be requested in the future
- Wasteful computations can be reduced

Time: tl — — — > Time: t2 : Bypass Time: t1 = Time: t2
content0 | content3 | content4 I cache content3
does not —— ! i~ certion 7y contentO content4
Insert | contentl requested i I%@ contentl content5
content3 content3 | till time t2 | content6 ' content3 _’[Admission %3 content2 contentt
Evict ' | ,
co\avﬂapslffafﬁgn \ e \EVICt : omit wasteful \Ewct
content2 content3 ! computation vic victim
Victim i
(a) Cache Eviction i (b) Cache Admission 3

Forwarding with Cache Admission

m Add cache admission before cache insertion

Interest - Miss Interest
— Receive —»{ CS Lookup » PIT Insert » FIB Lookup —»| Send |—p——————
"Hit
Data Insert Data
— Send |4 CS Insert | Admission le— PIT Delete |« Receive |fe——m

| < Bypass |

s Requirements of cache admission:
« Fast computation
« Computation for the cache admission should not degrade forwarding speed

« Small memory consumption
 Data structures for the cache admission should be implemented on DRAM

s Approach: Filter (Fast frequency-based cache admission)

« It requires only a few instructions without any loops

« Counting bloom filter and small queue for fast computation and small
memory consumption

Algorithm for Fast Computation

= Algorithm: compare frequency with threshold

» Decides insertion of Data packets based on its frequency

« Records the number of arrivals of Interest packets as
frequency

..............

The number of arrivals of ' f
Interest packets ¢

(o)

Data packet

s Computation time

« Sufficiently low (less than 100 CPU cycles)

« The computation time does not have much impact on forwarding
speed (we will show the results later)

- Time complexity: O(1)
* No loops

Counter

.............

. > threshold? Yes

Insert

Bypass

Data Structure for Small Memory
Consumption

m Data structures:

« Counter: records a frequency of a Data packet to decide its
cache insertion

« Entry: the number of arrivals of Interest packets within history

 History: limits the number of recorded arrivals of Interest
packets in counter

« Entry: a hash of a name of an Interest packet

Hash of a name I
of an Interest packet | I |
!
_ _l q entries
the number of arrivals

of Interest packets f
within the last q Interests ¢

History (FIFO queue)

Counter (Counting bloom filter)

= Small memory consumption

« Counting bloom filter is space-efficient data structure
« The size of history is much smaller than that of counter 6

Method to Evaluate Forwarding Speed

1. Experimentation

« Implement an NDN software with Filter
« Measure computation time of each function in the NDN software

Interest NHss‘ Interest

— Receive —» CS Lookup PIT Insert » FIB Lookup = Send —0 — _ _ = = = = o
| Hit
Data Compose
Data . Insert Data /
«— Send | CS Insert | «— Admission = PIT Delete le— Receive le——m
| < Bypass !

2. Model-based estimation

 Calculate cache hit and insertion probabilities

 Calculate the average computation time of NDN forwarding

FWD .
Speed = Cyclesypy = 2fcaways1 * Cyclesg +2; emissPMES Cyclesy
+2f EHitpHit . Cyclesf +Ef EmsertpMissplnsertion . Cyclesf

7

Calculation of Insertion and Hit Probabilities

= Develop Filter model

« Calculate insertion probabilities of each Data packet
« Probability: “the num. of arrivals of Interest packets > threshold”
« Filter: inserts a Data packet when its frequency > threshold
* Frequency: the num. of arrivals of Interest packets within history
« Derived from CDF of Poisson Distribution

s Combine Filter model with FIFO* eviction modell2]

 Calculate insertion rates from Filter model and apply these
« FIFO eviction model: calculate hit probability from insertion rates
 Insertion rates: an Interest misses at cache and the Data is inserted

Insertion _ Hit\,,Insertion
}\c }\c(l — Pc)pc

[Filter model]
pinsertion — p[f. > Threshold] p¢'tt = FIFOQA{™eTHom, Csize)

:{ Eviction model]

* We choose FIFO because its implementation is simpler than LRU, LFU
[2] V. Martina etal., “A unified approach to the performance analysis of caching systems,” in Proc. of IEEE INFOCOM 2014 8

Evaluation Conditions

= NDN software: [3]
« Its computation is highly optimized by using hash tables
s Cache eviction policies:

- With Filter: FIFO
- Without Filter: FIFO, LRU, LFU

m Settings of Data packets:

« The number of unique Data packets: 10/ packets
« Popularity of Data packets: Zipf distribution with «=0.8
« Cache size: 1% of the number of unique Data packets

m Filter’s settings

- History Length: 10° entries
« Threshold: 10

[3] W. So, et.al. “Named data networking on a router: Fast and DoS-resistant forwarding with hash tables.” in Proc. of ACM/IEEE ANCS 2013 9

Evaluation Results

= Improvement of Forwarding Speed

* Filter reduces computation time for NDN forwarding by 24%
« Without Filter: 3201.0 cycles/packet — With Filter: 2431.2

* Filter improves forwarding speed of an NDN router
= Reduction of the number of cache insertions

- Cache insertion probability of Filter : 5.6x107°
« Filter efficiently bypasses cache insertions

m Deterioration of cache hit probability

» Filter doesn’t degrade cache hit probability of cache evictions

Firowih Fiter _Firo L Ly

0.26 0.37

10

Conclusion

s Wasteful cache computation for unpopular
content degrades forwarding speed

« Cache eviction always inserts content which may not be
requested in the future

« Cache admission allows the unnecessary cache insertion to be
bypassed

m Filter: a fast cache admission algorithm

* Filter identifies content that may not be requested in the future
« Fast computation and small memory consumption

» Filter improves forwarding speed

* Filter reduces the computation time by about 24%
* Filter does not degrade the cache hit probability

11

