
Identifying Highly Popular
Content Improves Forwarding
Speed of NDN Software Router

○Junji Takemasa, Kosuke Taniguchi,
Yuki Koizumi and Toru Hasegawa

Osaka University, Japan

Toward High-Speed NDN Routers
n Two heaviest functions of NDN routers [1]

1. FIB lookup
• Existing studies try to resolve this issue

• Fast LPM algorithms
• FIB lookup cannot be bypassed

• One of the essential functions of name-based forwarding
2. Cache insertion

• Algorithm for cache insertion is so simple that reducing its
computation is difficult

• However, cache insertion for some content can be omitted

n Cache insertion for unpopular content
• Inserting content that will not be requested in the future can

be omitted
• Computation time for cache insertion can be reduced

2[1] K. Taniguchi et al., “Poster : A Method for Designing High-speed Software NDN Routers,” in Proc. of ACM ICN, 2016.

Wasteful Cache Computation
n Unnecessary cache insertion due to cache eviction
• Cache eviction (like LRU and LFU) decides which content should be evicted

from the cache
• Incoming content is always inserted into the cache even if it will not be requested

in the future

n Bypassing the unnecessary cache insertion with cache
admission
• Cache admission decides whether content should be inserted to the cache

• Content is not inserted into a cache if it may not be requested in the future
• Wasteful computations can be reduced

3

Time: t1

Evict

Insert

wasteful
computation

content3
does not
requested
till time t2

content1
content3

content0
Time: t2

content5
content6

content4

content3

content3
Evict

Victim
content2

Time: t1

victim
Evict

Insert content1
content2

content0
Time: t2

content5
content6

content4

victim
Evict

Admissioncontent3

content3Bypass
cache
insertion

omit wasteful
computation

(a) Cache Eviction (b) Cache Admission

Forwarding with Cache Admission
n Add cache admission before cache insertion

n Requirements of cache admission:
• Fast computation

• Computation for the cache admission should not degrade forwarding speed
• Small memory consumption

• Data structures for the cache admission should be implemented on DRAM

n Approach: Filter (Fast frequency-based cache admission)
• It requires only a few instructions without any loops
• Counting bloom filter and small queue for fast computation and small

memory consumption
4

CS Lookup PIT Insert FIB LookupReceive Send

PIT Delete AdmissionCS Insert ReceiveSend
Hit

Miss

Insert

Interest

Data

Interest

Data

Bypass

Algorithm for Fast Computation
n Algorithm: compare frequency with threshold
• Decides insertion of Data packets based on its frequency
• Records the number of arrivals of Interest packets as

frequency

n Computation time
• Sufficiently low (less than 100 CPU cycles)

• The computation time does not have much impact on forwarding
speed (we will show the results later)

• Time complexity: O(1)
• No loops

5

𝑓" > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑?𝐷"

Counter𝑓"

Insert

Bypass

Yes

NoData packet

The number of arrivals of
Interest packets

Data Structure for Small Memory
Consumption
n Data structures:
• Counter: records a frequency of a Data packet to decide its

cache insertion
• Entry: the number of arrivals of Interest packets within history

• History: limits the number of recorded arrivals of Interest
packets in counter
• Entry: a hash of a name of an Interest packet

n Small memory consumption
• Counting bloom filter is space-efficient data structure
• The size of history is much smaller than that of counter 6

Counter (Counting bloom filter)𝑓"

ℎ" History (FIFO queue)
Hash of a name

of an Interest packet

the number of arrivals
of Interest packets
within the last 𝑞	Interests

𝑞	entries
ℎ"

Method to Evaluate Forwarding Speed
1. Experimentation
• Implement an NDN software with Filter
• Measure computation time of each function in the NDN software

2. Model-based estimation
• Calculate cache hit and insertion probabilities
• Calculate the average computation time of NDN forwarding

7

𝑺𝒑𝒆𝒆𝒅 = 𝑪𝒚𝒄𝒍𝒆𝒔𝑵𝑫𝑵𝑭𝑾𝑫 =

+𝜮𝒇	∈𝑯𝒊𝒕𝒑𝑯𝒊𝒕・𝑪𝒚𝒄𝒍𝒆𝒔𝒇

	𝜮𝒇	∈𝑨𝒍𝒘𝒂𝒚𝒔𝟏・𝑪𝒚𝒄𝒍𝒆𝒔𝒇 +𝜮𝒇	∈𝑴𝒊𝒔𝒔𝒑𝑴𝒊𝒔𝒔・𝑪𝒚𝒄𝒍𝒆𝒔𝒇
+𝜮𝒇	∈𝑰𝒏𝒔𝒆𝒓𝒕𝒑𝑴𝒊𝒔𝒔𝒑𝑰𝒏𝒔𝒆𝒓𝒕𝒊𝒐𝒏・𝑪𝒚𝒄𝒍𝒆𝒔𝒇

CS Lookup PIT Insert FIB LookupReceive Send

PIT Delete AdmissionCS Insert ReceiveSend

Hit

Miss

Insert

Interest

Data

Interest

Data

Bypass

Data Compose

Calculation of Insertion and Hit Probabilities

n Develop Filter model
• Calculate insertion probabilities of each Data packet

• Probability: “the num. of arrivals of Interest packets > threshold”
• Filter: inserts a Data packet when its frequency > threshold
• Frequency: the num. of arrivals of Interest packets within history
• Derived from CDF of Poisson Distribution

n Combine Filter model with FIFO* eviction model[2]

• Calculate insertion rates from Filter model and apply these
• FIFO eviction model: calculate hit probability from insertion rates
• Insertion rates: an Interest misses at cache and the Data is inserted

8

Filter model
λ"OPQRSTUVP = λ"(1 − 𝑝"[UT)𝑝"OPQRSTUVP

𝑝"[UT = FIFO(λ"OPQRSTUVP, 𝐶𝑠𝑖𝑧𝑒)𝑝"OPQRSTUVP = P 𝑓" > 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

Eviction model

[2] V. Martina etal., “A unified approach to the performance analysis of caching systems,” in Proc. of IEEE INFOCOM 2014

* We choose FIFO because its implementation is simpler than LRU, LFU

Evaluation Conditions
n NDN software: [3]
• Its computation is highly optimized by using hash tables

n Cache eviction policies:
• With Filter: FIFO
• Without Filter: FIFO, LRU, LFU

n Settings of Data packets:
• The number of unique Data packets: 107 packets
• Popularity of Data packets: Zipf distribution with 𝛼=0.8
• Cache size: 1% of the number of unique Data packets

n Filterʼs settings
• History Length: 10h entries
• Threshold: 10

9[3] W. So, et.al. “Named data networking on a router: Fast and DoS-resistant forwarding with hash tables.” in Proc. of ACM/IEEE ANCS 2013

Evaluation Results
n Improvement of Forwarding Speed
• Filter reduces computation time for NDN forwarding by 24%

• Without Filter: 3201.0 cycles/packet → With Filter: 2431.2
• Filter improves forwarding speed of an NDN router

n Reduction of the number of cache insertions
• Cache insertion probability of Filter : 5.6×10mh

• Filter efficiently bypasses cache insertions

n Deterioration of cache hit probability
• Filter doesnʼt degrade cache hit probability of cache evictions

10

FIFO with Filter FIFO LRU LFU
0.36 0.22 0.26 0.37

Conclusion
n Wasteful cache computation for unpopular

content degrades forwarding speed
• Cache eviction always inserts content which may not be

requested in the future
• Cache admission allows the unnecessary cache insertion to be

bypassed
n Filter: a fast cache admission algorithm
• Filter identifies content that may not be requested in the future
• Fast computation and small memory consumption

n Filter improves forwarding speed
• Filter reduces the computation time by about 24%
• Filter does not degrade the cache hit probability

11

